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Remote Sensing to Detect Herbicide Drift on Crops1
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Abstract: Glyphosate and paraquat herbicide drift injury to crops may substantially reduce growth
or yield. Determining the type and degree of injury is of importance to a producer. This research
was conducted to determine whether remote sensing could be used to identify and quantify herbicide
injury to crops. Soybean and corn plants were grown in 3.8-L pots to the five- to seven-leaf stage,
at which time, applications of nonselective herbicides were made. Visual injury estimates were made,
and hyperspectral reflectance data were recorded 1, 4, and 7 d after application (DAA). Several
analysis techniques including multiple indices, signature amplitude (SA) with spectral bands as fea-
tures, and wavelet analysis were used to distinguish between herbicide-treated and nontreated plants.
Classification accuracy using SA analysis of paraquat injury on soybean was better than 75% for
both 1/2- and 1/83 rates at 1, 4, and 7 DAA. Classification accuracy of paraquat injury on corn was
better than 72% for the 1/23 rate at 1, 4, and 7 DAA. These data suggest that hyperspectral reflec-
tance may be used to distinguish between healthy plants and injured plants to which herbicides have
been applied; however, the classification accuracies remained at 75% or higher only when the higher
rates of herbicide were applied. Applications of a 1/23 rate of glyphosate produced 55 to 81%
soybean injury and 20 to 50% corn injury 4 and 7 DAA, respectively. However, using SA analysis,
the moderately injured plants were indistinguishable from the uninjured controls, as represented by
the low classification accuracies at the 1/8-, 1/32-, and 1/643 rates. The most promising technique
for identifying drift injury was wavelet analysis, which successfully distinguished between corn plants
treated with either the 1/8- or the 1/23 rates of paraquat compared with the nontreated corn plants
better than 92% 1, 4, and 7 DAA. These analysis techniques, once tested and validated on field scale
data, may help determine the extent and the degree of herbicide drift for making appropriate and,
more importantly, timely management decisions.
Nomenclature: Corn, Zea mays L.; soybean, Glycine max (L.) Merr.
Additional index words: Glyphosate, hyperspectral imagery, indices, paraquat, ROC curve, wavelet
analysis.
Abbreviations: DAA, days after application; DINO, differential index of normalized observations;
DWT, discrete wavelet transform; EPSP, 5-enolpyruvylshikimate-3-phosphate; LDA, linear discrim-
inant analysis; NDVI, normalized difference vegetation index; NIR, near-infrared; POST, postemer-
gence; ROC, receiver operator characteristics; SA, signature amplitudes.

INTRODUCTION

Herbicide spray drift is not a new problem; however,
with the increase in herbicide-resistant crops, burndown
herbicide applications on conservation and no-tillage
hectarage, and postemergence (POST) herbicide appli-
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cations, the occurrence of drift incidents has increased
(Drapala 2001). Spray drift, as defined by the Environ-
mental Protection Agency, is ‘‘The physical movement
of a pesticide through air at the time of application or
soon thereafter, to any site other than that intended for
application (often referred to as off-target)’’ (Anony-
mous 1999). This definition of drift does not include
damages caused by volatilization, erosion, or windblown
soil particles to which herbicides are attached. Drift is
influenced by a variety of variables such as environmen-
tal conditions (wind, temperature, and humidity), herbi-
cide formulation, pressure, nozzle type, droplet size, cul-
tivar, growth stage, and distance that the herbicide is re-
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leased from the target (Al-Kahatib and Peterson 1999;
Auch and Arnold 1978; Cranmer and Linscott 1990;
Miller 1993; Nordby and Skuterud 1975).

Soybean is typically planted later in the growing sea-
son than corn. Burndown applications on these fields, as
well as early POST applications of glyphosate to soy-
bean, may drift off-target and affect adjacent fields of
corn or susceptible, conventional soybean (Al-Khatib
and Peterson 1999). Early in the growing season (April–
May) is a particularly windy time of the year in Missis-
sippi, thereby increasing the likelihood of a drift occur-
rence when herbicides are applied. Glyphosate and para-
quat injury may decrease growth, reduce yield, or kill
the susceptible crop entirely if the drift dosage exceeds
the target tolerance level. Environmental conditions such
as high winds or a temperature inversion favor herbicide
drift and may result in injury up to a mile or more away.
Determining the type and degree of injury is important
to a producer. To use remote sensing to identify herbicide
injury on crops, the manner in which herbicides affect
crops must be considered.

Glyphosate is a foliar-applied, nonselective herbi-
cide used for burndown and POST applications in
glyphosate-resistant transgenic crops (James and Krattig-
er 1996). Inhibition of growth occurs almost immediate-
ly, followed by chlorosis at the newest growing points and
necrosis throughout the entire plant within 1 to 2 wk.
Glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate
(EPSP) synthase in the shikimate pathway (Amrhein et
al. 1980). Without EPSP, the plant is unable to produce
the aromatic amino acids phenylalanine, tryptophan, and
tyrosine needed for growth. Paraquat is also a nonselec-
tive, foliar-applied herbicide (Calderbank 1968). Para-
quat accepts electrons from photosystem I of photosyn-
thesis and in the process reduces molecular oxygen, re-
sulting in superoxide radicals (Calderbank 1968). Hy-
droxyl radicals are generated that readily oxidize lipid
membranes. In full sunlight, exposed vegetation becomes
chlorotic within hours and necrotic within 1 to 3 d (Fuerst
and Vaughn 1990).

A challenge in detecting herbicide injury caused by
drift rates is that crops often do not exhibit extensive
injury symptoms; however, yield may still suffer. Row-
land (2000) determined that low rates of glyphosate
could reduce the yield of corn, and that stand height was
one of the best parameters for estimating the degree of
damage. If a crop is injured to the degree that height is
limited and yield is decreased, perhaps a remotely sensed
image could be used to detect these injury symptoms
seemingly invisible to the naked eye.

Using remotely sensed data to determine the extent
and location of herbicide injury would allow a producer
an opportunity to seek out the guilty party, whose her-
bicide drifted. In 1998, drift accounted for 21% of the
insurance claims in Iowa, and by 1999, over 80% of the
complaints investigated by the Iowa Department of Ag-
riculture and Land Stewardship dealt with drift (Pring-
nitz 1999). Drift became quite a problem in the Missis-
sippi Delta in 2000 and 2001, with 145 cases of drift
reported to the Bureau of Plant Industries in 2001 (T.
McDaniel, personal communication). Because the fre-
quency of drift events was increasing, herbicide labels
were recently rewritten to ban the aerial application of
glyphosate from March 15 through April 30 (T. Mc-
Daniel, personal communication). Determining the her-
bicide that drifted onto his or her crop is the first step
before seeking out the guilty applicator. Second, the sta-
tus of the crop must be determined. A producer needs
to know what percentage of his or her acreage has been
affected and to what degree. With this information, he
or she could make an informed crop management and
mitigation decision.

Remote sensing has been used in a variety of appli-
cations such as detecting weed infestations (Medlin et
al. 2000), nutrient deficiencies (Bausch and Duke 1996;
Kokaly 2001), disease (Nutter 1989; Nutter and Guan
2002), and hail damage (Heller 1978; Peters et al. 2000;
Schiller 2001). Remote sensing imagery coupled with
geospatial technologies could potentially be used to
identify drift-affected portions of a field and also to de-
termine the amount of herbicide that drifted onto the
plant, resulting in injury. A producer could use this in-
formation to make informed decisions on a site-specific
basis about terminating the crop and replanting or leav-
ing the injured crop in the field, hoping that it will over-
come the injury. Thus, the objectives of this research
were to determine whether hyperspectral remote sensing
data be used to identify crops onto which herbicide had
drifted and, if so, at what rates.

MATERIALS AND METHODS

A drift experiment was conducted twice during the
summer of 2001 outdoors at the R. Rodney Foil Plant
Science Research Center at Mississippi State, MS. These
experiments focused on nonselective herbicides prone to
drift off-site and affect nontarget crops. These experi-
ments were conducted in a randomized complete block
design with a 2 by 5 by 2 factorial arrangement of treat-
ments, with herbicide, rate, and species as factors. Soy-
bean (cultivar ‘Hutcheson’) and corn (cultivar ‘Pioneer
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3167’) were the conventional, nontransgenic crops se-
lected for the drift experiment. All the plants in both
experiments were grown in 3.8-L pots containing a top-
soil from a Bosket fine-loamy, mixed, active, thermic
Mollic Hapludalfs from the Delta Research and Exten-
sion Center, Stoneville, MS. Seeds were sown in excess,
and plants were thinned to one plant per pot after emer-
gence. Plants were watered as needed and fertilized
weekly with approximately 230 ml of fertilizer solution3

containing the following concentration of nutrients and
micronutrients: N, 584 mg/L; P, 502 mg/L; K, 486 mg/
L; Fe, 5.8 mg/L; Cu, 2.7 mg/L; Zn, 2.33 mg/L; Mn, 1.94
mg/L; B, 0.777 mg/L and Mo, 0.0019 mg/L. The two
herbicides used were glyphosate and paraquat. Herbi-
cides were applied to plants at the five- to seven-leaf
stage with a CO2-pressurized backpack sprayer in 140
L/ha at 160 kPa for the 0.53 rate. A 0.53 rate of the
typical burndown rates of glyphosate, 1.12 kg ae/ha, and
paraquat, 0.45 kg cation/ha, was applied at 1.61 km/h
(Ahrens 1994). The paraquat treatment included a 0.25%
(v/v) nonionic surfactant.4 Concentration of the herbicide
solution was then held constant, whereas application
speed and subsequent spray volumes were adjusted to
deliver herbicides at 0.125-, 0.063-, and 0.0313 rates in
35, 8.75, and 4.375 L/ha, respectively. The reason for
selecting this particular methodology for herbicide ap-
plication was to avoid the potential underestimation of
herbicide efficacy by applying dilute concentration of
herbicide in a large carrier volume. Previous research
dealing with simulated drift has suggested that in addi-
tion to the amount of herbicide delivered, the droplet size
and the concentration of the herbicide solution should
ideally be held in the same proportion as it would have
been applied to the original target field (Banks and
Schroeder 2000). Spray volume and concentration have
been studied for both paraquat (McKinlay et al. 1974)
and glyphosate (Cranmer and Linscott 1990; Ellis et al.
2001). In the field, a single, concentrated droplet of her-
bicide will be more effective at reducing plant growth
than several drops of a more dilute herbicide containing
the same amount of herbicide. In an effort to limit the
underestimation of drift injury, application speed, as op-
posed to herbicide concentration, was adjusted.

Visual injury ratings were taken 4, 7, and 10 d after
application (DAA). The basis for assigning injury ratings
included chlorosis, necrosis, and stunting and was as-

3 Miracle-Gro Plant Food, Stern’s Miracle-Gro, Box 888, Port Washington,
NY 11050.

4 Latron, AG-98, Rhom and Haas, 100 Independence Hall, West Philadel-
phia, PA 19106.

signed on a scale of 0 to 100, with 100 representing total
plant mortality and 0 representing no injury.

Hyperspectral data were generated from individual
leaves at 1, 4, and 7 DAA. For both soybean and corn,
the second and third unfurled leaves from the top of the
plant were measured. Leaves were specifically chosen
from similar age classes across species to control for
differences caused by leaf age or maturity.

Hyperspectral reflectance data were collected with a
handheld spectroradiometer.5 An active light source
(tungsten filament) was used to minimize the variability
inherent with the use of a passive light source. One re-
flectance measurement was taken per leaf using a 258
bare-fiber field-of-view fiber optic cable. The reflectance
of individual leaves, or leaflets in the case of soybean,
was recorded with the leaf positioned on a flat, foam,
black background. The bare-fiber sensor was connected
within the active light-source unit so that the sensor was
positioned directly above the leaf. A black circular ap-
erture restricted the area the sensor could measure to a
diameter of approximately 3 cm. This window was
placed on the upper leaf surface, directly in the center
of the corn leaves, and in the bottom center of the middle
leaf of the soybean leaflet. A black background posi-
tioned directly beneath the leaf was used to eliminate
background effects.

These hyperspectral reflectance measurements were
collected in the spectral range of 350 to 2,500 nm. This
resulted in 2,151 individual spectral bands for each hy-
perspectral reflectance curve, with a bandwidth of 1.4
nm between 350 and 1,050 nm, and 1.0 nm between
1,050 and 2,500 nm. Hyperspectral responses potentially
suggesting herbicide injury were analyzed, and pertinent
features were extracted using indices and signature am-
plitudes (SA).

Multiple indices were used as features in traditional
statistical classification procedures. This was conducted
with a stepwise discriminant analysis procedure6 using
crossvalidation (leave-one-out testing) in all instances.
Rouse et al. (1973) and Tucker (1979) were pioneers in
using portions of the electromagnetic spectrum, partic-
ularly in the red and near-infrared (NIR) regions, in ra-
tios such as normalized difference vegetation index
(NDVI) [(NIR 2 red)/(NIR 1 red)], to assess vegetation
health and vigor. Because of the tendency for healthy
vegetation to absorb red light and reflect energy in the
NIR, vigorous plants will have a high NDVI value. Con-
versely, as plant health declines, so too does the ability

5 ASD FieldSpec Pro FR, Analytical Spectral Devices, Inc., 5335 Sterling
Drive, Boulder, CO 80301-2344.

6 SAS, SAS Institute, Inc., SAS Campus Drive, Cary, NC 27513.
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Figure 1. Differential indices of normalized observation indices were con-
structed from multiple regions of the electromagnetic spectrum including the
range between 1,400 and 2,500 nm.

to absorb red light and reflect NIR; this scenario results
in low NDVI values, signifying a decrease in plant vigor.
A series of indices commonly found in the literature
were compiled and used as classifiers (Table 2).

Additional indices such as soil-adjusted vegetation in-
dex have been created that address issues such as mini-
mizing soil background interference (Huete 1988). With
this concept of tailoring an index to address a particular
need, additional differential index of normalized obser-
vations (DINO) indices (Table 3; Figure 1) were con-
structed from regions of the electromagnetic spectrum
that would potentially maximize the differences in re-
flectance caused by moisture stress, herbicide injury, or
differential water use with respect to species. Carter and
Knapp (2000) suggest that the region between 690 and
720 nm is particularly sensitive for stress detection in a
wide variety of vascular plants. Because reflectance in
the 720-nm region is prone to be affected by stress, it
was included in several of the DINO indices. In addition,
in several of the DINO indices, reflectance values were
squared to increase the relative differences. Several stud-
ies have also suggested that the shortwave infrared
(1,400 to 2,500 nm) is largely influenced by plant water
status (Gausman 1985; Tucker 1980); therefore, because
herbicide injury has the potential to influence the mois-
ture status of a plant, peak 1 (P1 5 average (1,631 to
1,641 nm)), an average of the reflectance across a 10-
nm range, and peak 2 (P2 5 average (2,215 to 2,225
nm)) were chosen as representatives from this region and
included in the construction of the DINO indices.

Reflectance data were analyzed within each day, ex-
perimental run, between experimental runs, and finally,
within an all-encompassing, pooled data set comprising
data from all experiments.

The second analysis technique used SA from a subset
of the spectral bands as features. Data were pooled
across experimental runs and were analyzed within both

experiments. Because 2,151 reflectance values are avail-
able to be used as classification features, it is computa-
tionally efficient to select a subset of bands (top five
bands) based on discriminant capability. Receiver oper-
ator characteristic (ROC) analysis was used to determine
the efficacy of each band as a potential classification
feature. ROC analysis used in this study assumes that
the two classes’ features have Gaussian distributions.
The area under the ROC curve ranges from 0.5 to 1.0,
with 0.5 representing features not useful in classification
(exact overlap of the two classes’ distribution curves)
and 1.0 corresponding to ideal classification features (no
overlap between distribution curves) (Hanley and
McNiel 1982). The area under the ROC curve was used
as a design parameter for choosing a subset of spectral
bands to use as classification features. The reflectance
values for the top five bands (largest area under the ROC
curve) of the original data set of 2,151 bands were used
as features. The extracted feature for each spectral re-
sponse is a one by five vector. This technique was a
univariate analysis technique so that only one band is
considered at a time as a potential feature. This method
was used because of its relative simplicity.

Linear discriminant analysis (LDA) was used to in-
crease classification accuracy. LDA increases the class
separability by linearly combining the available features
to form an optimum single scalar value (Duda et al.
2001). Therefore, the original one by five feature vector
is eventually reduced to a one by one feature vector.
Finally, the one by one feature vector was input into a
maximum-likelihood classifier to determine the appro-
priate classification. It is important to note that the ROC
analysis, the LDA, and the maximum-likelihood decision
boundaries require training data. To fully use all the ex-
perimental data collected in this study, the classification
system was trained and tested using crossvalidation anal-
ysis.

In addition to using reflectance values of the five best
bands as features, two alternative feature extraction tech-
niques were also used. The motivation for the third anal-
ysis technique stemmed from visual inspection of the
hyperspectral reflectance data. Differences in reflectance
between the plants to which herbicide had been applied
and the control plants were particularly evident in two
regions of the electromagnetic spectrum between 600 to
670 nm and 770 to 950 nm (Figure 2). Five linearly
spaced spectral bands within each of these two regions
600 to 670 nm (600, 618, 635, 653, and 670 nm) and
770 to 950 nm (770, 815, 860, 905, and 950 nm) resulted
in 10 features for classification. LDA was also used with
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Figure 2. Two regions were chosen that exhibited the greatest differences in
spectral response between corn plants that were treated with a 1/2–time rate
of paraquat and control corn plants.

Table 1. Visual percent injury ratings of paraquat and glyphosate injury on corn and soybean at 4, 7, and 10 DAA.a

Rateb

Soybean 4 DAA

Glyphosate Paraquat

Corn 4 DAA

Glyphosate Paraquat

Soybean 7 DAA

Glyphosate Paraquat

Corn 7 DAA

Glyphosate Paraquat

Soybean 10 DAA

Glyphosate Paraquat

Corn 10 DAA

Glyphosate Paraquat

%

0.500
0.125
0.031
0.016
0.000

55
47
28
10
0

99
93
71
52
0

20
11
4
1
0

94
89
76
62
0

81
67
50
8
0

99
93
68
47
0

50
42
28
12
0

89
71
59
56
0

78
68
41
6
0

98
89
50
22
0

60
55
36
10
0

90
77
68
37
0

LSD 12 9 22 13 18 19

a Abbreviation: DAA, days after application.
b Expressed as a fraction of the full (labeled) rate, which were glyphosate, 1.12 kg ae/ha, and paraquat, 0.45 kg ai/ha, applied at 1/2-, 1/8-, 1/32-, and

1/643 rates of typical burndown applications.

the second analysis technique. A fixed set of features is
potentially useful for extending the analysis technique to
other sensor systems.

The final feature extraction technique used wavelets,
a multiresolutional analysis tool, having recently gained
popularity among a diverse cross section of engineering
applications (Burrus et al. 1998). This technique was
particularly suited for this application because there were
large-scale differences between the two data sets that po-
tentially would be captured in the wavelet transform do-
main. The Haar mother wavelet was used to compute
wavelet coefficients (Haar 1910). The discrete wavelet
transform (DWT) coefficients were computed for a 10-
level wavelet decomposition using the Haar function as
the mother wavelet. The DWT decomposes a signal into
a number of detailed coefficients and approximation co-
efficients, depending on the desired level of decompo-
sition (Graps 1995). Multiple mother wavelets and wave-
let bases are available for use in decompositions and may
be selected accordingly depending on the application
(Burrus et al. 1998; Koger 2001; Leon 2001). The Haar

wavelet was a good choice for image processing because
of its simplicity and fast computational algorithm.

The DWT coefficients obtained from the Haar decom-
position were then subjected to ROC analysis, and five
coefficients with the largest area under the ROC curve
were chosen. LDA was then applied to form the opti-
mum scalar feature. This scalar was then input into a
maximum-likelihood classifier. Crossvalidation was used
for the system training and testing.

Indices were also examined for their utility in distin-
guishing between glyphosate or paraquat drift. Injury
was recorded (Table 1), and a data set was compiled
containing all hyperspectral responses taken across rates
(except for the controls), herbicides, and species. Mul-
tiple indices were used as features in traditional statis-
tical classification procedures (Tables 2 and 3). These
procedures were conducted with stepwise discriminant
analysis procedure using crossvalidation (leave-one-out
testing) in all instances. Classification accuracies were
generated with respect to day.

RESULTS AND DISCUSSION

Injury from the lowest rate of glyphosate, 1/64 times,
ranged from 1 to 12%, regardless of DAA or species
(Table 1), and would most likely not affect yield (Row-
land 2000). Paraquat injury at the 1/643 rate was higher,
56% on corn and 47% on soybean at 7 DAA, but began
to decline to 37 and 10%, respectively, by 10 DAA as
the plants grew out of the injury (Table 1).

Reflectance data were initially analyzed with multiple
indices within experimental runs and days. Classification
accuracies were generated for each of the four rates plus
the control with respect to herbicide, species, time, and
experimental run. These classification accuracies were
quite variable, ranging from 8% correct for glyphosate
on soybean 4 DAA in the second experimental run to



WEED TECHNOLOGY

Volume 18, Issue 2 (April–June) 2004 363

Table 2. Indices used for assessing vegetative health and status.a

Index Ratiob Reference

RVI
NDVI
DVI
NDVIg
IPVI
MSI

(NIR/red)
(NIR 2 red)/(NIR 1 red)
(NIR 2 red)
(NIR 2 green)/(NIR 1 green)
NIR/(NIR 1 red)
(Tm5/Tm4)

Jordan (1969)
Rouse et al. (1973), Tucker (1979)
Lillesand and Kiefer (1987), Richardson and Everitt (1992)
Gitelson et al. (1996)
Crippen (1990)
Hunt and Rock (1989)

a Abbreviations: RVI, ratio vegetation index; NDVI, normalized difference vegetation index; DVI, difference vegetation index; NDVIg, NDVI green; IPVI,
infrared percentage vegetation index; MSI, moisture stress index; NIR, near-infrared; Tm, thermatic mapper.

b Green 5 545–555 nm; red 5 670–680 nm; NIR 5 835–845 nm; Tm4 5 760–900 nm; Tm5 5 1,550–1,750 nm.

Table 3. Differential indices of normalized observations (DINO), including
regions of the electromagnetic spectrum between 1,400 and 2,500 nm.

Index Portions of the spectruma

DINO1
DINO2
DINO3
DINO4
DINO5
DINO6

(P1 2 red)/(P1 1 red)
(P2 2 red)/(P2 1 red)
(P1 1 P2)/red
(P1/red)2

(P1 1 P2)2/red
((P1 1 P2)2 2 720)/((P1 1 P2)2 1 720)

DINO7
DINO8
DINO9
DINO10
DINO11
DINO12

(P1 1 P2)2/720
(10P2)2/720
((P2)2 2 720)/((P2)2 1 720)
((5P2)2 2 720)/((5P2)2 1 720)
P2
(P2 2 720)/(P2 1 720)

a P1 5 peak 1, average (1,631–1,641 nm); P2 5 peak 2, average (2,215–
2,225 nm); red, average (670–680 nm); 720 5 720 nm.

73% correct for paraquat on soybean 4 DAA in the first
experimental run (data not shown). Although classifica-
tion accuracies were relatively good in this one scenario,
when averaged across herbicides, species, time, and ex-
perimental runs, they were only slightly higher (29%)
than by random (20%) in a five-class system. In the in-
stance that indices were successful (73% classification
accuracy) in classifying rates of paraquat on soybean
4 DAA in the first experimental run, the highest rate,
1/23, and controls generated 100 and 83% classification
accuracies, respectively. Misclassification of the 1/643
rate of soybean as controls, and also misclassification of
the 1/323 as 1/83, resulted in reduced overall accura-
cies.

To circumvent the difficulties presented by misclassi-
fication of the moderate and low rates (1/8, 1/32, and
1/643), and still generate useful information, the five
rates were grouped into two categories: plants to which
a 1/323 or greater rate of herbicide was applied (1/2,
1/8, and 1/323) and plants to which a 1/643 or no her-
bicide was applied (1/643 and control). Continuing to
analyze data within species, herbicide, and experimental
run, classification accuracies, using multiple indices as
features in step-wise discriminant analysis with cross-
validation testing, remained relatively poor when the

number of categories was reduced from a five-class to a
two-class system (data not shown).

There was no interaction with respect to experimental
run and the visual injury data; therefore, data from both
experimental runs were pooled (Table 1). Pooling ex-
perimental runs is beneficial because it increases the
sample size and adds to the robustness and predictive
capabilities of models generated from a larger data set.
Data were again analyzed with multiple indices, and
each rate was compared individually with the controls
(Table 4). Substantial injury was caused by the two high-
est rates (1/2 and 1/83) of glyphosate, resulting in 50
to 81% injury on soybean and 42 to 67% injury on corn
(Table 1). Although visual injury symptoms greater than
40% were present, at neither 4 nor 7 DAA were indices
able to distinguish between either of these two rates and
the control any better than 77%. The injury symptoms
were present, but this analysis technique was not able to
distinguish between injured plants and unaffected (con-
trol) plants. Glyphosate injury may be more difficult to
detect because of its mode of action. Glyphosate inhibits
the production of essential aromatic amino acids, result-
ing in injury symptoms that are visible in the treated
plants several DAA. There were no, or only minor, in-
jury symptoms associated with the contact of glyphosate
on the leaf, so at low application rates, there may be no
visible injury symptoms beyond stunting or a slight
height reduction (Rowland 2000). These features, al-
though they would have been more likely to affect the
newer leaves that were measured (second and third un-
furled leaf from the top of the plant), were difficult to
detect spectrally. Conversely, paraquat injury was suc-
cessfully detected in both soybean and corn, particularly
at the 1/2- and 1/83 rates. Whereas glyphosate injury
symptoms were visible after several days, paraquat acted
within a matter of hours. The 1/23 rate of paraquat on
both soybean and corn was distinguished better than
91% from controls at both 1 and 4 DAA (Table 4). By
7 DAA, the plants exposed to the 1/23 rate of paraquat
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Table 4. Multiple indices generated from hyperspectral data were used to distinguish between controls and plants to which herbicide was applied in various
amounts.a

Rateb

1 DAA

Glyphosate

Soybean Corn

Paraquat

Soybean Corn

4 DAA

Glyphosate

Soybean Corn

Paraquat

Soybean Corn

7 DAA

Glyphosate

Soybean Corn

Paraquat

Soybean Corn

%

0.500
0.125
0.031
0.016

71
75
54
42

86
41
70
59

91
65
73
70

96
83
83
75

58
62
36
48

77
71
53
42

100
100
58
60

100
62
71
46

58
63
54
42

42
66
50
37

—
75
54
50

54
37
62
42

a Abbreviation: DAA, days after application.
b Expressed as a fraction of the full (labeled) rate, which were glyphosate, 1.12 kg ae/ha, and paraquat, 0.45 kg ai/ha, applied at 1/2-, 1/8-, 1/32-, and

1/643 rates of typical burndown applications.

Table 5. SA analysis using the five best bandsa as features was used to distinguish between soybean controls and soybean to which various rates of glyphosate
or paraquat had been applied.b

Ratec Glyphosate Control Overalld Paraquat Control Overalle

%

1 DAA
0.500
0.125
0.031
0.016

58 6 23
50 6 24
58 6 23
58 6 23

50 6 24
58 6 23
58 6 23
25 6 21

54 6 17
54 6 17
58 6 17
42 6 17

92 6 13
67 6 22
42 6 23
58 6 23

100 6 0
83 6 18
58 6 23
50 6 24

96 6 7
75 6 15
50 6 17
54 6 17

4 DAA
0.500
0.125
0.031
0.016

25 6 21
83 6 18
67 6 22
67 6 22

0
50 6 24
25 6 21
33 6 22

13 6 11
67 6 16
46 6 17
50 6 17

83 6 18
67 6 22
75 6 21
58 6 23

83 6 18
83 6 18
83 6 18
42 6 23

83 6 12
75 6 15
79 6 14
50 6 17

7 DAA
0.500
0.125
0.031
0.016

50 6 22
50 6 22
67 6 22
42 6 21

67 6 22
67 6 22
67 6 22
25 6 21

61 6 19
59 6 17
67 6 16
33 6 16

—
100 6 15

50 6 24
42 6 23

—
75 6 21
58 6 23
67 6 22

—
79 6 18
54 6 17
54 6 17

a The five best spectral bands for discriminating between treatments were determined by receiver operator characteristic analysis.
b Abbreviations: SA, signature amplitude; DAA, days after application.
c Expressed as a fraction of the full (labeled) rate, which were glyphosate, 1.12 kg ae/ha, and paraquat, 0.45 kg ai/ha, applied at 1/2-, 1/8-, 1/32-, and

1/643 rates of typical burndown applications.
d Classification accuracy represents how accurately SA analysis correctly classified plants in a two-class system: soybean plants treated with various rates of

glyphosate compared with nontreated controls.
e Classification accuracy represents how accurately SA analysis correctly classified plants in a two-class system: soybean plants treated with various rates of

paraquat compared with nontreated controls.

had either died (soybean) or had new, uninjured growth
emerging (corn). These new corn leaves, spectrally in-
distinguishable from the new leaves on the control
plants, accounted for the lower classification accuracy,
54%, at 7 DAA (Table 4).

SA analysis using the five best bands as features and
comparing each rate separately with the controls pro-
duced classification accuracy trends similar to those pro-
duced by the multiple indices analysis technique (Tables
5 and 6). Glyphosate-injured plants were virtually indis-
tinguishable from the control plants, regardless of rate,
species, or time. Glyphosate injury at the 1/23 rate was
present at 4 and 7 DAA on soybean at 55 and 81% and
on corn 20 and 50%, respectively (Table 4.1). Classifi-

cation accuracy of paraquat injury on soybean was better
than 75% for both 1/2- and 1/83 rates at 1, 4, and 7
DAA (Table 5). Classification accuracy of paraquat in-
jury on corn was better than 72% for the 1/23 rate at
1, 4, and 7 DAA (Table 6). These data suggest that hy-
perspectral reflectance may be used to distinguish be-
tween healthy plants and injured plants to which herbi-
cides have been applied; however, the classification ac-
curacies remained at 75% or higher only when the higher
rates of herbicide were applied and visual injury ratings
were 90% or greater. Substantial injury was generated
by applications of 1/32- and 1/643 rates of paraquat,
ranging from 47 to 71% on soybean and 56 to 76% on
corn (Table 1) at 4 and 7 DAA, respectively. In addition,
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Table 6. SA analysis using the five best bandsa as features was used to distinguish between corn controls and corn to which various rates of glyphosate or
paraquat had been applied.b

Ratec Glyphosate Control Overalld Paraquat Control Overalle

%

1 DAA
0.500
0.125
0.031
0.016

50 6 24
42 6 23
30 6 24
67 6 22

50 6 33
50 6 33
17 6 25
50 6 33

50 6 19
44 6 19
25 6 18
61 6 19

75 6 21
42 6 23
58 6 23
42 6 23

83 6 18
67 6 22
67 6 22
58 6 23

79 6 14
54 6 17
63 6 16
50 6 17

4 DAA
0.500
0.125
0.031
0.016

50 6 22
39 6 22
40 6 25
50 6 24

33 6 32
17 6 25
17 6 25
50 6 33

45 6 18
32 6 17
31 6 19
50 6 19

75 6 21
75 6 21
67 6 22
42 6 23

75 6 21
75 6 21
67 6 22
58 6 23

75 6 15
75 6 15
67 6 16
50 6 17

7 DAA
0.500
0.125
0.031
0.016

58 6 23
58 6 23
30 6 24
67 6 22

67 6 32
33 6 32
17 6 25
50 6 33

61 6 19
50 6 19
25 6 18
61 6 19

67 6 32
33 6 32
57 6 27
25 6 21

75 6 21
58 6 23
75 6 21
58 6 23

72 6 17
50 6 19
67 6 17
42 6 17

a The five best spectral bands for discriminating between treatments were determined by receiver operator characteristic analysis.
b Abbreviations: SA, signature amplitude; DAA, days after application.
c Expressed as a fraction of the full (labeled) rate, which were glyphosate, 1.12 kg ae/ha, and paraquat, 0.45 kg ai/ha, applied at 1/2-, 1/8-, 1/32-, and

1/643 rates of typical burndown applications.
d Classification accuracy represents how accurately SA analysis correctly classified plants in a two-class system: corn plants treated with various rates of

glyphosate compared with nontreated controls.
e Classification accuracy represents how accurately SA analysis correctly classified plants in a two-class system: corn plants treated with various rates of

paraquat compared with nontreated controls.

Table 7. SA analysis using 10 bands as features chosen from two spectral
regionsa exhibiting the greatest difference between the treated corn plants and
the controls.b

Ratec Paraquat Control Overalld

%

1 DAA
0.500
0.125
0.031
0.016

92 6 13
100 6 0
92 6 13
75 6 21

100 6 0
100 6 0

83 6 18
100 6 0

96 6 7
100 6 0

88 6 11
88 6 11

4 DAA
0.500
0.125
0.031
0.016

100 6 0
75 6 21

100 6 0
58 6 23

100 6 0
75 6 21

100 6 0
67 6 22

100 6 0
75 6 15

100 6 0
63 6 16

7 DAA
0.500
0.125
0.031
0.016

67 6 32
67 6 32
67 6 26
58 6 23

92 6 13
75 6 21
58 6 23
42 6 23

83 6 14
72 6 17
62 6 17
50 6 17

a Five linearly spaced spectral bands were chosen between 600 and 670 and
also between 770 and 950 nm. These 10 spectral bands were used as features
for classification.

b Abbreviations: SA, signature amplitude; DAA, days after application.
c Expressed as a fraction of the full (labeled) rate, which were glyphosate,

1.12 kg ae/ha, and paraquat, 0.45 kg ai/ha, applied at 1/2-, 1/8-, 1/32-, and
1/643 rates of typical burndown applications.

d Classification accuracy represents how accurately SA analysis correctly
classified plants in a two-class system: corn plants treated with various rates
of paraquat compared with nontreated controls.

applications of a 1/23 rate of glyphosate produced 55
to 81% soybean injury and 20 to 50% corn injury 4 and
7 DAA, respectively. However, with these analysis tech-
niques, the moderately injured plants were indistinguish-
able from the uninjured controls, as represented by the
low classification accuracies at the 1/8, 1/32, and
1/643 rates. With this in mind, additional analysis tech-
niques were used.

A data set with which to try additional analysis tech-
niques was chosen from the paraquat treatments because
these treatments provided a broad range of injury, as
well as the most promising results from the first two
analysis techniques. Corn was chosen instead of soybean
because there was significant soybean mortality at the
higher paraquat application rates. The third analysis
technique was similar to the top five bands technique,
but as opposed to selecting the top five bands with ROC
curve analysis, two regions were selected in which dif-
ferences between the treated and the control spectral re-
sponses were most evident (Figure 2). Within each of
these two regions, five linearly spaced spectral bands
were chosen for a total of 10 features. These features
were used to generate classification accuracies (Table 7).
Classification accuracies, regardless of rate, were 88% or
higher 1 DAA (Table 7). Excluding the 1/643 rate at 4
DAA, classification accuracies were 100, 75, and 100%
for the 1/2-, 1/8-, and 1/323 rates, respectively (Table
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Figure 3. Hyperspectral responses of soybean and corn at 1 d after application
of paraquat.

Figure 5. Hyperspectral response of corna at 7 d after application of paraquat.

Figure 4. Hyperspectral responses of soybean and corn at 4 d after application
of paraquat.

Table 8. Classification accuracies were determined using wavelet coefficientsa

as features to distinguish between corn controls and corn to which various
rates of paraquat had been applied.b

Ratec Paraquat Control Overalld

%

1 DAA
0.500
0.125
0.031
0.016

100 6 0
100 6 0

92 6 13
83 6 18

100 6 0
100 6 0

83 6 18
92 6 13

100 6 0
100 6 0
88 6 11
88 6 11

4 DAA
0.500
0.125
0.031
0.016

100 6 0
92 6 13

100 6 0
75 6 21

100 6 0
92 6 13

100 6 0
50 6 24

100 6 0
92 6 9

100 6 0
63 6 16

7 DAA
0.500
0.125
0.031
0.016

100 6 0
100 6 0

56 6 27
25 6 21

92 6 13
92 6 13
42 6 23
67 6 22

94 6 9
94 6 9
48 6 18
46 6 17

a The five best wavelet coefficients were determined by receiver operator
characteristics analysis.

b Abbreviation: DAA, days after application.
c Expressed as a fraction of the full (labeled) rate, which were glyphosate,

1.12 kg ae/ha, and paraquat, 0.45 kg ai/ha, applied at 1/2-, 1/8-, 1/32-, and
1/643 rates of typical burndown applications.

d Classification accuracy represents how accurately wavelet analysis cor-
rectly classified plants in a two-class system: corn plants treated with various
rates of paraquat compared with nontreated controls.

7). By 7 DAA, classification accuracy of the 1/23 rate
remained relatively high at 83% compared with indices
54% (Table 4) and SA top five bands (Table 6). Benefits
associated with this technique include increased likeli-
hood of distinguishing between treated plants and con-
trol plants, even as drift rates decrease. However, this
type of analysis requires a more robust data set to de-
velop the procedure and train the system. Data must be
collected of the vegetation’s baseline spectral response
before herbicide application. These data would then need
to be compared with affected vegetation, and the regions
exhibiting the greatest difference between treated and
untreated spectral responses would be designated and
spectral bands could then be extracted and used as fea-

tures in a classification. Figures 3–5 are examples of the
type of information needed to make an informed deci-
sion with respect to herbicide influence on vegetation
spectral response with respect to time.

The final analysis technique for detecting drift was
wavelet analysis, and it was performed on the same para-
quat–corn data set analyzed with the 10 linear bands.
Classification accuracies 1 DAA were 88% or greater for
all rates, with both 1/2- and 1/83 rates distinguishing
100% from the controls (Table 8). Classification accu-
racy remained high 4 DAA, with 1/2-, 1/8-, and 1/323
rates producing 100, 92, and 100% classification accu-
racies, respectively (Table 8). Unlike the other analysis
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Table 9. Indicesa were used to build discriminant models that distinguished between glyphosate and paraquat injury on soybean and corn at 1, 4, and 7 DAA.b

1 DAA

Soybean (78%)c

Index CCCe

Corn (93%)d

Index CCC

4 DAA

Soybean (90%)

Index CCC

Corn (89%)

Index CCC

7 DAA

Soybean (60%)

Index CCC

Corn (65%)

Index CCC

DINO12
DINO6

0.37
0.41

RVI
NDVIg
NDVI

0.53
0.59
0.62

RVI
DINO12
NDVIg
DINO4

0.67
0.71
0.74
0.78

RVI
DINO12
MSI
DINO4
DINO2
DINO3

0.61
0.63
0.66
0.67
0.69
0.73

DINO2
DINO5
DINO7

0.06
0.17
0.21

NDVIg
DINO12
MSI
DINO11

0.06
0.10
0.22
0.26

a Indices (Tables 2 and 3) created from hyperspectral data were used as classifiers.
b Abbreviations: DAA, days after application; DINO, differential index of normalized observations; RVI, ratio vegetation index; NDVIg, normalized difference

vegetation index (green), MSI, moisture stress index; CCC, canonical correlation coefficient.
c Soybean to which either glyphosate or paraquat was applied at 1/2-, 1/8-, 1/32-, or 1/64-3 rates.
d Corn to which either glyphosate or paraquat was applied at 1/2-, 1/8-, 1/32-, or 1/64-3 rates.
e CCC measures the amount of variability accounted for by each index as it is added to a discriminant model distinguishing between paraquat and soybean

injury on crops.

techniques, wavelet analysis distinguished the paraquat
from the control treatments 94% at both the 1/2- and 1/
83 rates 7 DAA. By 7 DAA, the leaves that were being
measured were new growth that had not been directly
injured (at least with respect to contact injury) by para-
quat. These plants remained stressed, 71% or higher in-
jury at 7 DAA (Table 1), but wavelet analysis showed
promise for detecting both the contact burn caused by
paraquat at 1 and 4 DAA, as well as the stress that would
be evident in the new growth at 7 DAA of a plant whose
leaves had recently been substantially injured with para-
quat. This is the scenario that would most likely be seen
in a field-scale drift event. Of course, considering the
timing of the imagery acquisition with respect to the date
that the drift event occurred would be beneficial in de-
termining the extent and degree of the injury throughout
the field. Some leaves would exhibit the necrotic symp-
tomology, whereas newer regrowth, depending on how
soon after the drift event the imagery was gathered,
would lack the necrotic lesions but could potentially re-
flect light differently compared with a plant that had nev-
er been exposed to paraquat.

Indices were also examined for their utility in distin-
guishing between glyphosate or paraquat drift. Classifi-
cation accuracies were generated with respect to day (Ta-
ble 9). Classification accuracies ranged from 60% for
soybean at 7 DAA to 93% for corn at 1 DAA. Consid-
ering how low the classification accuracies were for the
glyphosate treatments compared with the controls (ap-
proximately 50% that was effectively equivalent to
chance in a two-class system) (Table 4), the differences
being measured are most likely an injured reflectance
(paraquat) compared with a much less injured reflectance
(glyphosate). In fact, at 7 DAA, as the glyphosate injury

increased to 81 and 50% on beans and corn, respectively,
the paraquat injury began to decline as the plants grew
new leaves. This resulted in plants with similar degrees
of injury, albeit caused by different herbicides, which
were difficult (60 to 65% classification accuracies) to
classify spectrally (Table 9). Of the indices that were
useful in distinguishing between herbicides, ratio vege-
tation index, a ratio comprising the red and NIR regions
of the spectrum, and DINO12, an NDVI-like index com-
prising a region around 2,200 nm, were two of the in-
dices that contributed the most to explaining the vari-
ability in these classification models. This information is
useful to isolate the regions of the electromagnetic spec-
trum that contribute the most to discriminating between
treatments should it ever be necessary to apply addition-
al data analysis techniques such as 10 linear bands.

The analysis techniques described in this study are
now available for field validation and testing. Geospatial
technologies used to map a field in which a drift event
has occurred can be combined with remote sensing spec-
tral algorithms and techniques for management decisions
such as assessing the extent and perhaps the degree of
damage by creating management zones so that the grow-
er could make timely and informed decisions with re-
spect to terminating the crop and replanting, filing suit
against an irresponsible pesticide applicator, or letting
the crop continue to grow, hoping that it will recover
before harvest.
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